2-selmer Groups, 2-class Groups and Rational Points on Elliptic Curves of Conductor 4d

نویسنده

  • CHAO LI
چکیده

Let E : y = F (x) be an elliptic curve over Q defined by a monic irreducible integral cubic polynomial F (x) with negative and square-free discriminant −D. We determine its 2-Selmer rank in terms of the 2-rank of the class group of the cubic field L = Q[x]/F (x). We then interpret this result as a mod 2 congruence between the Hasse-Weil L-function of E and a degree two Artin L-function associated to the cubic field L and provide several explicit examples. When L has odd class number and the root number of E is −1, the Birch and SwinnertonDyer conjecture predicts that E(Q) should have rank one. When E has conductor 4D, we construct a canonical point in E(Q) using Heegner points on a Shimura curve of level 4D. We naturally conjecture it to be of infinite order and we verify this conjecture explicitly for the case D = 11.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

On Tate-Shafarevich Groups of some Elliptic Curves

Generalizing results of Stroeker and Top we show that the 2-ranks of the TateShafarevich groups of the elliptic curves y = (x + k)(x + k) can become arbitrarily large. We also present a conjecture on the rank of the Selmer groups attached to rational 2-isogenies of elliptic curves. 1991 Mathematics Subject Classification: 11 G 05

متن کامل

Average Size of 2-selmer Groups of Elliptic Curves, I

In this paper, we study a class of elliptic curves over Q with Qtorsion group Z2×Z2, and prove that the average order of the 2-Selmer groups is bounded.

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015